CDAW2014 group 1 NoRH-RHESSI-Hinode-SDを用いた フレア・フィラメント放出の多波長解析

增田 智 (名古屋大学太陽地球環境研究所)

Characteristics

- Increase in intensity of electromagnetic waves in various wavelengths
- duration
 - A few minutes a few hours
- temperature > 10 MK
- Energy 10²⁷-10³³ ergs
- Occurrence
 1 event/month 10events/day

1) Release of magnetic energy

- 1) Release of magnetic energy
- 2) particle are accelerated (not understood)

- 1) Release of magnetic energy
- 2) particle are accelerated (not understood)
- 3) Acc. electrons produce HXR emission (mostly footpoints)

- 1) Release of magnetic energy
- 2) particle are accelerated (not understood)
- 3) Acc. electrons produce HXR emission (mostly footpoints)
- 4) Above loop top HXR source not understood

- 1) Release of magnetic energy
- 2) particle are accelerated (not understood)
- 3) Acc. electrons produce HXR emission (mostly footpoints)
- 4) Above loop top HXR source not understood
- 5) collisional loses of acc. electrons heat plasma
- 6) "evaporation" fills loop

Relationships between electric field and particle acceleration

Relationships between electric field and particle acceleration

Electric field vs HXR intensity

Purpose

To understand the relationship between particle acceleration and magnetic reconnection in solar flares.

Data Analyses

STEP 1

Electric field ← Hard X-ray source motion, photoshperic magnetic field Ca II ribbon motion, photospheric magnetic field

STEP 2

Hard X-ray intensity, spectrum (power-law lindex) vs electric field Microwave intensity, spectrum (power-law index) vs electric field Eruption (SDO, STEREO) vs electric field Hard X-rays 硬X線

radiation mechanism 放射機構

Bremsstrahlung 制動放射 (or free-free emission) same as soft X-rays but by nonthermal electrons or by super-hot (>30MK) plasma

Hard X-rays are detected only during a solar flare.

The solar corona is usually very dark in hard X-rays.

Electric field vs HXR spectral index

Only in this event, the relationship between hard X-ray spectral index and electric field was reported. We must check if this relationship is valid or not in other events.

Event selection

Criteria

 (1) Reported in the NoRH event list
 (2) Simultaneous observations with RHESSI and RHESSI detected > 50 keV photons
 (3) SDO data are available
 (4) Occurred near the disk center (East 30 deg. to West 30 deg.)
 (5) Hinode/SOT data are available

The selected events

20110215_0	154	X2.2	S20W10
20120705_03	337	M4.7	S18W29
20130502_0	504	M1.1	N10W26

Hard X-ray Observations in solar flares

2.4.2 hard X-ray telescope 硬X線望遠鏡

It is very hard to reflect hard X-rays with a mirror optics.

modulation-collimator type telescope (すだれコリメータ) proposed by Dr. Minoru Oda (小田 稔)

Characteristics of hard X-rays: high transmission, low diffraction (高い透過性、低い回折性 = 高い直進性)

Hinotori/SXT (1981 – 1982) rotating bigrid Yohkoh/HXT (1991 – 2001) multi-element bigrid RHESSI (2002 – present) rotating multi-element bigrid

RHESSI

THE REUVEN RAMATY HIGH ENERGY SOLAR SPECTROSCOPIC IMAGER

To explore the basic physics of particle acceleration and explosive energy release in solar flares Reuven Ramaty 1937 – 2001

RHESSI imaging

incoming X-rays

detector

detected signal is modulated

Spatial distribution of hard X-ray sources (硬X線源の分布)

Yohkoh/HXT: concept of modulation collimators

Image synthesis by modulation collimators すだれコリメータによる像合成の概念図

Yohkoh/HXT vs RHESSI

	Yohkoh/HXT	RHESSI
Effective area	$\sim 60 \text{cm}^2$	~100cm ²
	(64 detectors)	(9 detectors)
Energy range	14-93 keV	3 keV – 15 MeV
Energy resolution	2 keV at 10 keV	< 1 keV at 3 keV
	10 keV at 100 keV	5 keV at 15 MeV
Field of view	full sun	full sun
Spatial resolution	~5 arcsec	2 arcsec < 109 keV
		7 arcsec 100 keV
		$36 \operatorname{arcsec} > 400 \operatorname{keV}$
Time resolution	0.5 sec	2 sec
Dynamic range	~10:1	50:1-100.1

X-ray imaging

Example:

very large flare occurring near solar limb (side view)

GOES SXI: 20-Jan-2005 06:44:29.148 UT

Two ribbon flare with 2 HXR footpoints (blue) and thermal loop (red)

flare near solar disk center (view from above)

IMAGE: TRACE EUV emission ~1.5MK

blue contours:

HXR footpoints (non-thermal Bremsstrahlung)

red contours: thermal X-ray emission

Very compact flare

2" (1500 km) spatial resolution