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THERMAL CONDUCTION IN THE TRANSITION REGION
AND ITS EFFECTS ON THE ENERGY BALANCE OF OPEN
CORONAL REGIONS

R. Hammer

Kiepenheuer-Institut fir Sonnenphysik, Freiburg, Germany

Abstract

Thermal conductive energy flow into the transition region represents a considerable
energy loss for the solar corona. Inclusion of this term lead to a new class of self-consistent
models for magnetically open coronal regions. Recently a number of modifications of the ther-
mal conductivity term were suggested, mainly in order to account for the emission measure
reversal in the lower transition region. These suggestions include the contributions by ions
and neutrals to thermal conduction, ambipolar diffusion, and turbulence. We show that dif-
fusion, since it affects only the lowermost parts of the transition region, does not significantly
change the global properties of the corona, unless the transition region base pressure is chosen
unrealistically small. This behavior is explained in terms of the boundary layer character of
the lower transition region in such models. By contrast, turbulence can enhance the condue-
tivity more drastically and up to higher temperatures. For large and intermediate pressures,
turbulent conduction tends to flatten the lower, but to steepen the remainder of the transition
region. The overall thickness of the transition region is reduced, but the total energy losses
are enhanced compared to models based on the Spitzer conductivity. The minimum possible
energy losses of the corona are also enhanced. The coronal temperature that minimizes the
energy losses, however, does not depend much on the type of conductivity.

1. Introduction”

Magnetically open coronal regions lose energy by three mechanisms: (a) radiation from
the corona, (b) wind, and (¢) thermal conduction into the transition region. While (b) and
(¢) can be shown to increase with increasing coronal temperature T, (a) decreases. Therefore,
there exists a certain coronal temperature T, i, that minimizes the total coronal energy losses
Fy, for a given base pressure pg (Hearn 1975).

Conduction into the transition region (term b) is an important energy loss for the
corona. This term has often been neglected in solar wind models. By including it, however,
the arbitrariness due to unknown lower boundary conditions is removed, and the corona models
become self-consistent (e. g., Couturier et al. 1979, Hearn and Vardavas 1981, Hammer 1982,
Withbroe 1988, Hollweg 1992, Wang 1993).
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Fig. 1. A simple model of transition region and corona

Downward conduction, Fo = —kVT, serves to heat up the outflowing solar wind and
to balance the radiation from the lower transition region (where the density and thus the
emissivity is largest). In the corona, thermal conduction is dominated by electrons, for which
the thermal conductivity & o« T%/2. As a result of this strong temperature sensitivity, VT
must become very large at low temperatures in order to maintain a sufficient energy flux Fe.
Due to this steep temperature gradient, there is not much plasma left at a given temperature,
in contradiction to the large observed emission measure at temperatures below about 2 10° K.

To resolve this discrepancy, a number of authors suggested geometric, time dependent,
or opacity effects, which will not be discussed here. Others noticed that the classical electron
conductivity is no longer appropriate at low temperatures, but that ions and neutral particles
transport both translational and ionization energy, thus enhancing the conductivity. The
transition region might even be turbulent, resulting in an even larger enhancement of k. Then
VT needs no longer be so steep to transport the energy, so that there would be enough plasma
at low temperatures to explain the large emission measure.

The current paper uses a simple corona model (Sect. 2) to investigate the effects of
such modifications of the thermal conductivity in the transition region on the corona and its
minimum energy loss (Sect. 3).

2. Model

Since the details of the coronal heating law are not yet known, we consider a simple
spherically symmetric model consisting of an isobaric (p = py = const), unheated transition
region that is connected at radius 7 = r; to an isothermal (T' = T, = const) corona (Fig. 1).

The total energy losses Fr, can be calculated by integrating the radiative, conductive,
and wind losses from the base point ry out to the critical point r,. These losses are balanced
by some kind of nonthermal heat input, which is absorbed in the corona over a characteristic
damping length L of the order of the distance 7; — 7¢. The model is uniquely determined by
specifying two quantities, e. g. po and T¢, or F, and L.

Calculations were made for four different types of conductivity, which are shown in
Fig. 2 for a pressure of 0.1 dyn cm™?:

o the canonical Spitzer-Harm (1953) electron thermal conductivity in the fully ionized
limnit,
1.8910°°
K= —————
InA
where the Coulomb logarithm InA is a slowly varying function of T’ and n,;

T5/2
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Fig. 2. Thermal conductivity vs. temperature for a pressure of 10~! dyn cm=2.

o the conductivity published by Nowak and Ulmschneider (1977). It is based on numer-
ical fits to a full Chapman-Enskog-Burnett solution that takes the mutual interactions
between various species into account. The contribution by neutrals and the transport of
ionization energy lead to an enhancement of x with respect to the Spitzer value. (For
the pressure and ionization model used in Fig. 2, however, the difference is largest at
T < 110*K and thus not prominent in the figure.)

the conductivity derived by Fontenla et al. (1991; their Fig. 7) from hydrostatic energy
balance models of the transition region that take into account the diffusion of hydrogen
atoms and ions;

the turbulent conductivity postulated by Cally (1990). He followed the suggestion by
various authors (e. g. Heyvaerts and Priest 1983, 1992) that the transition region might
be in a permanent state of turbulence. For the associated turbulent conduction Cally
assumed a mixing length type law,

Kiurb = @pcpul,

where the eddy speed u is taken from the observed nonthermal velocities, the mixing
length [ is parametrized as a power law in T, and the power law exponent as well as
the coefficient ¢ are adjusted such that the model gives the observed emission measure
distribution. For the total conductivity Cally took the sum of k4., and the Spitzer value.
Note that xy.,s is proportional to the density and thus much more strongly dependent
on p than the other x variants.

3. Results

Corona models calculated with the Fontenla et al. and (even more so) with the Nowak
and Ulmschneider conductivities are barely distinguishable from those calculated with the
Spitzer k. For example, the total energy losses Fr and the thickness r; — rg of the transition
region for given parameters py and 7, and the minimum possible energy loss Fr, min for given

Po, differ between the models by at most 1% as long as py is large or intermediate.

Significant deviations exist only for extremely small values of the base pressure. Here
the thickness of the transition region turns out to be larger, and the total energy losses smaller,
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than with the Spitzer conductivity, by an amount of the order of 30 % for 102 dynem™2
with the Fontenla et al. conductivity and 10~*dyn cm~2 with the Nowak and Ulmschneider
conductivity. This can be explained by the fact that for such unrealistically small base pressures
the total emission is small, thus the temperature gradient required to transport the heat flow
becomes so flat that stratification is important already at low temperatures. As a result, most
of the plasma resides at low temperatures, where the conductivities deviate significantly from
the Spitzer value.

For larger base pressures, on the other hand, only little plasma exists at these low
temperatures. This explains why corona models are found to be very insensitive to whatever
happens below, say, 10° K. It has been known for a long time that models of the transition
region and corona are insensitive to the temperature and its derivative at the base of the
transition region. Gonezi et al. (1977; see also Appendix A of Hammer 1982) explained this
insensitivity by showing that the lower transition region acts as a mathematical boundary
layer over which any knowledge of the actual boundary value is rapidly lost.

By contrast, Cally’s turbulent conductivity differs significantly from the Spitzer value
up to higher temperatures. Since it is proportional to the density, the difference is even larger
than shown in Fig. 2 for pg > 10~ 'dynem=2. OQur calculations show that for large po the
thickness of the transition region is by nearly an order of magnitude smaller than in the same
model calculated with the Spitzer conductivity, while the total radiation is larger by a similar
factor. This can be explained as follows. At low temperatures k., is so extremely large
that the temperature gradient becomes flat at low temperatures, so that a lot of plasma exists
there and radiates efficiently. In order to supply this large amount of energy through the
upper transition region, where Cally’s conductivity does not differ from the Spitzer value (cf.
Fig. 2), the temperature gradient must be much steeper. As a result, the overall thickness of
the transition region becomes smaller than in the Spitzer case. Therefore the main effect of
turbulent conductivity is to flatten out, and to produce a large amount of radiation from, the
lower transition region, while the upper transition region steepens.

With decreasing pressure, the turbulent conductivity decreases, and so do the devia-
tions from models using the Spitzer conductivity. The ratio (71 — ro)caily/(r1 — 70)spitzer Of
the thicknesses of the transition regions, for example, is typically 1/10, 1/5, 1/2, and 2 for
po = 1, 10~%, 10~2 and 10~3dyncecm~2. The inverse of the ratio of the total energy losses,
Fr caity/ FL, spitzer, varies similarly, as do the minimal possible energy losses. Remarkably
enough, however, the coronal temperature T i, that minimizes the energy losses does not
differ much between the Cally and Spitzer models.
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