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Abstract

The characteristics of the observed polarization of radio waves are determined by the emission mech-
anism and by the propagation conditions in the corona. In the case of weak coupling between the two
electromagnetic wave modes, the polarization changes along the ray path, reflecting the local physical con-
ditions; this results in inversion of the sense of circular polarization when a transverse field region (TFR)
is crossed. On the contrary, if the wave coupling is strong, the polarization is fixed and its sense does not
change when a TFR is crossed. As a result, Stokes V maps of active regions do not always correspond to the
magnetic polarities shown in photospheric magnetograms. The differences depend on the wavelength, the
heliographic position of the region, as well as on the density and the magnetic field of the corona, at about
0.1 R� above the photosphere. In this short review I present older and recent observation of polarization
inversion and will discuss the diagnostics they provide on the magnetic field.
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1. Introduction

The polarization of the extraordinary (e) and ordinary (o) waves in a magnetized plasma, under the geometrical
optics approximation, depends on the electron density, Ne, the magnitude of the magnetic field, B and the angle
between the magnetic field and the line of sight, ϑ (see, e.g., Zheleznyakov, 1970). In the general case, the two
waves are elliptically polarized in opposite senses. Under conditions prevailing in the solar corona, the polarization
is circular for ϑ not too close to 90◦ (quasi-longitudinal propagation; QL) and linear for ϑ ∼ 90◦(quasi-transverse
propagation; QT).

As the physical conditions change along the path of the wave, its polarization changes accordingly. This implies
that, when the wave crosses a TF region, the sense of its polarization will change, since the sign of the longitudinal
component of the magnetic field changes. This happens as long as the geometrical optics approximation is valid, i.e.
for not too low values of ne and B. In a more general sense, the situation is described in terms of wave coupling.
When the coupling between the e-mode and o-mode waves is weak their polarization properties change along the
ray path, whereas when the geometrical optics approximation breaks down the waves are strongly coupled and their
polarization remains fixed, even if a TFR is crossed.

Wave coupling has been studied comprehensively by Cohen (1960; see also Zheleznyakov, 1970; Bandiera, 1982).
In the case of QL propagation the coupling becomes strong for extremely low values of the density. Of more interest
is the case of QT propagation; the coupling coefficient then is:
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and the symbols have their usual meaning.
Taking into consideration the effect of wave coupling, the sense of circular polarization does not necessarily change

when the waves cross a TFR. In fact, what happens depends on the value of C at the point, along the ray path,
where the longitudinal component of the magnetic field, B�, vanishes:
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Fig. 1.. Geometry of radiation crossing a region of quasi transverse magnetic field (after Bandiera, 1982)

• If C � 1 the polarization changes sense

• If C = 1 the polarization becomes linear (critical coupling)

• If C � 1 the sense of polarization does not change

Of particular interest is the case of C ≈ 1, which has been treated by Zheleznyakov and Zlotnik (1963). The
resulting polarization is elliptical, with the degree of circular (ρc) and linear (ρ�) polarization given by:
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which, for C = 1 give ρc = 0 and ρ� = 1.
We note here that, with continuum receivers used in radio observations, the observation of linearly polarized

radiation from the sun is not possible, due to the strong Faraday rotation within the receiver bandwidth. Further
difficulties may arise from wave scattering in coronal inhomogeneities (Bastian, 1995). In spite of these difficulties,
Alissandrakis and Chiuderi Drago (1994) reported the detection of linearly polarized radiation and measured the
Faraday rotation, using a narrow band spectral line receiver.

Consider now a region emitting right circularly polarized radiation, which crosses a TF region on its way to the
observer (Figure 1a). When the region is near the disk center, the TFR is crossed higher up in the corona where the
density is low and the coupling strong; consequently the observed polarization is the same as the intrinsic. As the
region moves towards the West limb (Figure 1b), at a certain point the radiation from the east part of the region will
cross the QT layer under conditions of weak coupling and its sense of circular polarization will be inverted. Closer
to the limb (Figure 1c)/ , the radiation from the entire emitting region will cross the QT layer under weak coupling
conditions and the observer will see left rather than right circular polarization. In the case of an active region,
with both left and right circularly polarized components, the depolarization strip , i.e. the region of low circular
polarization between the two oppositely polarized sources, will be displaced with respect to the photospheric B� = 0
line by an amount which increases as the active region moves towards the limb (Figure 1d). For a region in the
Eastern hemisphere the situation is the reverse: near the limb the observed sense of circular polarization will be that
of the preceding part. In all cases, it is the limbward side of the active region that may suffer polarization inversion.

An example of relevant observations is shown in Figure 2. Notice that on May 22, near the East limb, the entire
region shows left hand circular polarization, while the bipolar structure of the magnetic field is revealed on May 27,
after the central meridian crossing.

The position of the depolarization strip depends on wavelength. Equation (1) implies that C is higher at short
wavelengths, which means that the region of critical coupling moves lower in the corona; as a result the depolarization
strip is closer to the photospheric B� = 0 line at short wavelengths. The inversion is first observed at long wavelengths
and, as the region moves towards the limb, it appears at progressively shorter wavelengths. This is shown in Figure
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Fig. 2.. WSRT observations of an active region complex, together with Hα photographs and KPNO magnetograms near the East
limb (top) and after central meridian crossing (bottom). Right hand circular polarization is white. (Adapted from Kundu and
Alissandrakis, 1984)
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Fig. 3.. RATAN-600 multi-frequency Stokes I and V data during August 22 and 23, 1992, for an active region approaching the West
limb. (From Ryabov et al. 1999)

3, which presents one-dimensional RATAN-600 data at several frequencies over two days. The inversion of the
limbward source occurred between 2.93 and 3.07 cm, while on the second day the inversion is seen at wavelengths
as short as 1.71 cm.

Notice that the above discussion is independent on the intrinsic polarization of the wave at the site of its generation.
Propagation effects, at longer wavelengths in particular, can change considerably the sense of circular polarization
expected on the basis of the emission mechanism. The observations give a picture of the magnetic field polarity
not at the source of the emission, but the height where C = 1. Therefore one should be careful in inferring the
polarity of the magnetic field on the basis of V maps. One point made by Kundu and Alissandrakis (1984) is that,
due to expected smoother geometry of the coronal magnetic field, small scale magnetic structures should not be
detectable on V maps. Another important point raised by Alissandrakis and Preka-Papadema (1984) concerns the
identification of the magnetic polarity of microwave burst footpoints, which should also be affected by propagation
effects (see also Alissandrakis et al., 1993).

The crossing of a TRF is not the only known mechanism of polarization inversion. It has been pointed out (e.g.
Zheleznyakov et al., 1996) that the geometrical optics approximation is violated and mode coupling occurs also in
the case of radiation crossing plasma current sheets.

2. Diagnostics

Several methods of diagnostics of the magnetic field exist; the choice depends on the available data. For example,
if two or one-dimensional information at a single frequency is available over several days, the distance, q, of the
depolarization strip from the photospheric B� = 0 line can be measured. Using a dipole approximation for the large
scale magnetic field of an active region Kundu and Alissandrakis (1984) derived the following expression:

q = −2β

(
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3

)7/8
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where α is the dipole inclination, � the longitude, β = Ned3

6aω4 and d is the dipole moment. They determined β and α
by fitting the data, and from those the height of the critical point and the quantity Ned

3. Assuming a reasonable
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Table 1. Coronal parameters from circular polarization inversion.

Authors Wavelength Height Height Ne B
(cm) (cm) (R�) (cm−3) (G)

Kundu & 6.16 1.1 × 1010 0.16 108 20
Alissandrakis (1984) 1.3 × 1010 0.19 108 10

Alissandrakis et al.
(1996)

6.16 1. × 1010 0.14 6.4 × 107 16

Gelfreikh et al.
(1987)

2 – 4 1.2 × 1010 0.17 109 16

Nagelis & Ryabov
(1992)

2 – 4 3.8 × 109 0.05 26

Lang et al. (1993) 2 – 4 (0.5 – 2.0) × 109 0.07 – 0.29 50 – 15
(2 – 3)× 1010 0.29 – 0.43 10 – 5

Ryabov et al. (1999) 1.71 – 3.43 (5.7 – 8.7) × 109 0.08 – 0.12 65 – 20
1.71 – 3.43 (3.7 – 6.4) × 109 0.05 – 0.09 125 –30

value of Ne they got d and furthermore B. The exact value of Ne is not critical because B is proportional to the
cubic root of the assumed value. Their results, together with those of others, are listed in table 1.

Sometimes high resolution data are available for a single day only. In this case one can extrapolate the photospheric
magnetic field and find the height at which the projection of the B� = 0 line matches the position of the depolarization
strip. The height of the region of critical coupling as well as the magnetic field parameters are obtained from the
extrapolation and the electron density can be computed from the condition C = 1 (Alissandrakis et al., 1996). This
method, however, does not give a very accurate value of Ne due to its appearance in the third root in the expression.

Data of V as a function of both the position and the wavelength are readily available thanks to the RATAN-600
radio telescope. The Pulkovo group (e.g. Peterova and Akhmedov, 1973; Gelfreikh et al., 1987; Nagelis and Ryabov,
1992; Lang et al., 1993) have worked extensively with these and some of their results are included in table 1. Note
that the RATAN observations extend to short cm-λ, which allows one to access lower heights and stronger magnetic
fields.

An in-depth analysis of two days of RATAN-600 data was performed recently by Ryabov et al. (1999); they added
modelling of the active region emission, which enabled them to derive the variation of magnetic field as a function
of height. Their results are shown in Figure 4.

Fig. 4.. The magnetic field as a function of height above an active region, derived from the observations of Figure 3. (From Ryabov et
al. 1999)

The diagnostic methods presented so far are based on measurements of the position of the depolarization line
in space and/or in frequency. Additional diagnostics can be developed on the basis of the change of the degree of
circular polarization as a function of frequency and position, described by equation (3); this expression determines,
e.g. the width of the depolarization strip as well as the rate of change of polarization in the direction perpendicular
to the strip. The work of Gelfreikh et al. (1997) is in that direction; they used equation (3) to determine the gradient
of the magnetic field and obtained typical values in the range of 10−9 G/cm a height of 1.2 × 1010 cm, with a single
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value as high as 2 × 10−5 G/cm at a height of 5 × 109 cm.
If the intrinsic polarization of the waves were known, one could use equation (3) to obtain a map of the coronal

magnetic field in the region where C ≈ 1. Ryabov et al. (1999) using observations from the Nobeyama Radiohelio-
graph, determined the intrinsic polarization on a day without any obvious inversion and subsequently computed the
degree of circular polarization for the next day where inversion was observed. In this way they obtained a coronal
magnetogram. This appears to be a very powerful method for magnetic field diagnostics, although it is applicable
to rather limited regions.

The works presented so far show an almost perfect agreement between observations and theory. However, cases
of disagreement have also been reported, mainly in the long decimetric and metric range (Gopalswamy et al., 1991;
White et al., 1992). Efforts have been made to interpret these results in terms of current sheets (Gopalswamy et al.
1994) or scattering in inhomogeneities (Bastian, 1995).

3. Discussion and Conclusions

The availability of high spatial resolution microwave observations of the sun, as well as the further refinement
of the theory of wave propagation and coupling, have provided quantitative information on the magnetic field in
a region of the solar atmosphere otherwise inaccessible: the low coronal layers at 0.05 to 0.4 R�, which are well
above the heights of formation of the radio emission observed in the microwave range. At the same time, the theory
of wave propagation gives us a warning not to take at face value the observed circular polarization, as it does not
always reflect properties of its source.

The general picture that emerges from these studies is that the magnetic field drops from about 100 G to about
5 Gauss in this height range. A very important advantage of these methods is that they are independent of the
emission mechanism. Their primary limitation is that they are applicable only above active regions. With more and
better spatial resolution and spectral coverage, we should expect a more complete picture of what the magnetic field
looks like above active regions.
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and by INTAS grant 94-4625. I would like to thank the Nobeyama 98 LOC for their warm hospitality and financial
support.
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