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Abstract
Yohkoh observations of solar flares have revealed various types of evidence of magnetic reconnection, not

only for large scale flares but also for small scale flares. Observations have also revealed that the association
of mass ejections (plasmoids) with these flares is much more common than previously thought. On the
basis of these new Yohkoh observations, we briefly (but critically) review various reconnection models of
flares, and then discuss the plasmoid-induced-reconnection model, which is an extension of the CSHKP
model but includes the following points as essential ingredients of nonsteady fast reconnection. Plasmoid
formation and ejections are not simple by-products of reconnection, but play an essential role in storing
energy (by inhibiting reconnection in the preflare phase) and by inducing strong inflow into reconnection
region (by ejecting a huge amount of plasma in the impulsive phase). We shall also discuss how plasmoids
are accelerated by global magnetic pressure and reconnection jets. It is stressed that the plasmoid-induced-
reconnection model naturally explains both large and small scale flares, forming a basis of a unified model
of flares.

Key words: Sun: flares — magnetohydrodynamics

1. Introduction

Yohkoh has revealed various types of evidence of magnetic reconnection, such as cusps, arcades, loop top hard
X-ray (HXR) sources, and so on. (e.g., Tsuneta et al. 1992, Hanaoka et al. 1994, Masuda et al. 1994, Forbes and
Acton 1996). It has also been revealed that the association of mass ejection with flares is much more common than
previously thought (e.g., Shibata et al. 1995, Ohyama and Shibata 1997, 1998, Tsuneta 1997, Nitta 1996), leading
to a unified view and a unified model of flares (e.g., Shibata 1996, 1997a,b).
In this paper, starting from the overview of current status of basic reconnection theory, we will briefly review

reconnection models of flares. Then, we discuss unified model of flares (called plasmoid-induced-reconnection model;
Shibata 1997a,b), and the acceleration mechanism of plasmoids.

2. Current Status of Basic Reconnection Theory

First, it should be emphasized that even a two dimensional theory of magnetic reconnection has not yet been
established at present. Namely, no one has yet succeeded to solve the following fundamental question: What deter-
mines the reconnection rate ? The reconnection rate is defined as the reconnected flux per unit time or, equivalently,
electric field at the X point, or inflow speed into the X point. Some authors claimed that the driving process at the
boundary determines the reconnection rate (e.g., Sato and Hayashi 1979, Priest and Forbes 1987, 1992). However,
self-consistent numerical simulations show that the reconnection rate is not uniquely determined by the external
boundary condition but strongly depends on the local plasma conditions such as its resistivity properties; if uniform
resistivity is assumed, only Sweet-Parker reconnection is realized so that the Petschek-type fast reconnection does
not occur even if the fast inflow is imposed at the boundary (e.g., Ugai 1987, Scholer 1989, Yokoyama and Shibata
1994). One may ask, then, the following question: is the reconnection rate determined solely by local plasma condi-
tions such as microscopic physics leading to anomalous resistivity or collisionless conductivity ? The answer seems to
be no, since the reconnection rate (inflow speed) cannot freely increase but is limited by the macro-scale dynamics.
We should also note that in the solar corona and flares, the microscopic plasma scale (such as the ion Larmor radius

and the collisionless skin depth (= ωp/c, where ωp is the plasma frequency and c is the speed of light), both of which
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are one of typical thickness of microscopic current sheet and are of order of 10 – 100 cm in the corona, is much smaller
than the typical size of flares (∼ 109 cm). This is very different from the situation in magnetospheric substorms,
where both micro and macro scales (∼ 1000 km and 104 − 105 km, respectively) are not so different. The physics
of the latter dynamics is within the reach of the direct particle simulation but the dynamics of solar flares cannot
be studied by the particle simulation alone. The coupling between macro-scale dynamics (magnetohydrodynamics)
and micro-scale physics (electro-magnetic particle dynamics for non-Maxwellian plasma) is essential for solar flares,
but is extremely difficult to solve at present.
In conclusion, even the theory of 2D MHD reconnection has not yet been established, and hence it is not surprising

that the study of 3D MHD reconnection is in a very preliminary stage (e.g., see reviews by Forbes 1999). Furthermore,
the full problem of magnetic reconnection with kinetic effects such as particle acceleration is far from a final resolution
in the case of solar flares. This difficulty in basic reconnection theory, in turn, is a good news for observers, since
the role of observations in reconnection study is quite large; there are many chances for solar observers to contribute
to the development of basic reconnection theory using actual observations of magnetic reconnection occurring in the
solar corona and flares.

3. Brief Review of Reconnection Models of Flares

Let us now briefly review various reconnection models of flares.

3.1. Classical Two Ribbon Flare Model (CSHKP Model)
The most commonly quoted reconnection model for flares is the so-called CSHKP model (Carmichael 1964, Stur-

rock 1966, Hirayama 1974, Kopp-Pneuman 1976). This term was first introduced by Sturrock (1991), as describing
that “The eruption of a filament (or of an “extended filament”) distorts the overlying magnetic field configuration
in such a way as to produce a current sheet.” It has been argued that magnetic field lines in this current sheet
successively reconnect to form apparently growing flare loops and separating H α ribbons at their footpoints (see
also Svestka and Cliver 1992 for a historical review). This model is also called classical two ribbon flare model (see
also many models for extension of this model such as Cargill and Priest 1983, Forbes and Priest 1984, Cliver et
al. 1986, Martens and Kuin 1989, Moore and Roumeliotis 1992). It should be noted here that actual processes
considered in these four pioneering papers are different. For example, Carmichael (1964) and Kopp and Pneuman
(1976) thought that the solar wind opens a closed loop to form vertical current sheet, while Sturrock (1966) con-
sidered that an excess of gas pressure in the closed field region will produce a cusp and then drive field lines out
of cusp, forming a current sheet. On the other hand, Hirayama (1974) proposed that prominence eruption plays
an important role in triggering magnetic reconnection. The common point in the four pioneering papers is only
that magnetic reconnection occurs in a vertical current sheet above a closed loop. There is no agreement on the
mechanism of current sheet formation in these four papers. Hence, in a narrower sense, the CSHKP model refers
to only the magnetic reconnection occurring in a vertical current sheet above a closed loop. In a wider sense, the
CSHKP model may include the filament eruption or related global eruptive MHD instability as a key process for
triggering fast reconnection (e.g., Pneuman 1981, Priest 1981).
This is an important point, and if we forget this, we will not be able to discuss the comparison between the

CSHKP model and observations. Indeed it is not the Kopp-Pneuman model but this CSHKP model in a narrow
sense that Yohkoh established on the basis of discovery of beautiful cusps in LDE flares (e.g., Tsuneta et al. 1992,
1996, Hiei et al. 1994, Forbes and Acton 1996, and see also the reviews by Hudson and Ryan 1996, Shibata 1996,
Kosugi and Shibata 1996). This was a great step and a landmark in the flare research since before Yohkoh there
were many researchers who were skeptical about the reconnection model even in the case of LDE flares.
It should also be mentioned that on the basis of the CSHKP model in a wider sense, Shibata et al. (1995) searched

for X-ray plasma ejections above 8 impulsive compact-loop flares observed at the limb, and indeed found that all
these flares were associated with X-ray plasma ejections high above the soft X-ray loop, as originally predicted by
Hirayama (1991).

3.2. Current Sheet Formation Models
3.2.1. Converging Flux Model
Noting that the CSHKP model in a narrower sense (i.e., reconnection in a vertical current sheet above a loop)

has been established by Yohkoh observations (at least phenomenologically), we will move on to the next question:
What is the mechanism of the current sheet formation ?
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Sweet (1958) considered the approach of two bipoles toward each other (i.e., quadrupole), which creates a current
sheet between them. Uchida (1981, 1996) has criticized the CSHKP (or standard) model, by arguing that the CSHKP
model has a problem about the formation of current sheet, and instead proposed a quadrupole model. However,
this criticism is not justified, since there is no agreed opinion about the current sheet formation mechanism in the
CSHKP model as we discussed above. It is better to say that Uchida’s model is not an alternative model but is an
extension of the CSHKP model, if he admits the fast reconnection as a basic energy release mechanism. 1 Uchida
(1981, 1996) proposed that the current sheet should be formed between two approaching bipoles, as discussed by
Sweet (1958). Priest et al. (1994) and Parnel et al. (1994) developed this model and called the converging flux
model.
It should be also noted that there is one good point in Uchida’s idea on the role of a dark filament. He considered

that the dark filament inhibits the collapse of a current sheet and stores the energy. Using the modern word, we can
say that a plasmoid (or a helical flux rope in 3D space) inhibits the collapse of the current sheet. (It is interesting
to see that Hirayama (1974) also considered similar idea.) This could be an important process as we discuss later
(see section 4).

3.2.2. Emerging Flux Model
A current sheet is also formed between emerging flux and pre-existing flux. This model is called the emerging flux

model (Heyvaerts, Priest, Rust 1977, Forbes and Priest 1984, Shibata et al. 1992, Yokoyama and Shibata 1995).
Shibata et al. (1992) and Yokoyama and Shibata (1995, 1996) found that even this kind of small scale reconnection
is accompanied by the formation and ejection of plasmoids. Hence, apart from the formation process of current
sheet, the basic structure and dynamics occurring in the current sheet in the emerging flux model are quite similar
to those in the current sheet in the converging flux model (or quadrupole model).
It may be argued that one important difference between the emerging flux model and converging flux model is the

orientation of the current sheet; the current sheet is horizontal in the emerging flux model while it is vertical in the
converging flux model. However, the orientation of the current sheet strongly depends on the local magnetic field
strength and configuration, so that even in the emerging flux model it is possible to have a nearly vertical current
sheet (e.g., Yokoyama and Shibata 1995, 1996).

3.2.3. Sheared or Converging Arcade Model
The previous two models (converging flux or emerging flux models) are basically based on quadrupole or triple-

pole models. However, there are also possibilities that the current sheet can be created in a bipole (or an arcade
in 3D space). Forbes (1990) proposed that approaching footpoint in arcades forms a current sheet, while Choe and
Lee (1996) found that even a single sheared arcade eventually leads to the formation of a current sheet as a result
of a resistive MHD instability which occurs when the aspect ratio of a sheared arcade (h/w) exceeds 5 – 10 (h is
the height and w is the distance between two footpoints of the arcade). (Note that if there is no resistivity, the
sheared arcade tends to be an infinitely long current sheet, as Aly (1991) and Sturrock (1991) conjectured. Hence
the current sheet can be formed long before the Aly-Sturrock state is reached. Hence, there is no basic difficulty
resulting from the Aly-Sturrock theorem.)
On the other hand, Mikic et al. (1988), Biskamp and Welter (1989), and Kusano et al. (1995) studied the evolution

of multiple sheared arcades, and showed that the system becomes unstable because of a resistive MHD instability
to form a current sheet (see also Magara et al. 1997). It was found that multiple arcades have a larger growth rate
than in a single arcades (Choe and Lee 1996). Hence the multiplciity of bipoles is favorable for the formation of a
current sheet (and the resulting reconnection). It should be noted that all these numerical simulations show that
fast reconnection is necessary to create the fast ejection of plasmoids. In other words, the coronal mass ejection
(possibly corresponding to plasmoids) cannot occur if there is no fast reconnection. If we identify fast reconnection
as flares, this means that CME cannot occur without flares !
Finally we should remember that a shearing flow at the photospheric footpoint of the arcades is simply an

assumption. What is the origin of hypothetical shear flow ? Is the shear flow really a surface convection flow or

1 Uchida (1981) originally proposed that the interchange instability plays a fundamental role in explosive energy release in the impulsive
phase, and that the magnetic reconnection occurs slowly in the decay phase in an interleaved current sheet. This is fundamentally
different from the standard view of flares in which fast reconnection is believed to occur. Although his idea is interesting, there
is no evidence of the interchange instability in actual current sheets observed in the solar corona, magnetosphere, and laboratory
experiment. It is also theoretically difficult to expect that the interchange instability occurs in a vertical current sheet and it is even
difficult to expect that the instability grows significantly in the nonlinear stage; the interchange instability usually plays a role of
mixing the plasma rather than creating an explosive flow (e.g., Tajima and Shibata 1997).
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Fig. 1.. A Unified Model of Flares: Plasmoid-Driven Reconnection Model.

(a) (b)

(c) (d)

Fig. 2.. Further Unified model of flares, microflares, and X-ray jets.

a result of the emergence of a twisted flux tube ? To answer this question will be an important subject in future
observations.

4. Unified Model (Plasmoid-Induced-Reconnection Model)

On the basis of observations of X-ray plasmoid ejections from compact impulsive flares (Shibata et al. 1995,
Ohyama and Shibata 1997, 1998), Shibata (1996, 1997a,b) proposed the plasmoid-induced-reconnection model, by
extending the classical CSHKP model. In this model, the plasmoid ejection plays a key role in triggering fast
reconnection (Fig. 1). There are basically two roles of a plasmoid in triggering fast reconnection.
First, a plasmoid can store energy by inhibiting reconnection. Only after the plasmoid is ejected from the current
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Fig. 3.. Plasmoid velocity (Vplasmoid), its height, and inflow velocity (Vinflow) as a function of time, predicted by the analytical model
described in the text. Note that the unit of time is 1/ω. This figure may be compared with observation shown in Fig. 2.

Fig. 4.. Observed relationship between plasmoid height and hard X-ray intensity (Ohyama and Shibata 1997). Since hard X-ray
intensity is a measure of energy release rate (∼ B2ViL2/4π), this figure could represent the relationship between plasmoid height
and inflow speed (Vi).
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sheet is reconnection possible. If a larger plasmoid is ejected, a larger energy release will occur.
Second, a plasmoid can induce strong inflow into the reconnection region. Let us consider the situation where a

plasmoid suddenly rises at velocity Vplasmoid. Since the plasma density does not change much during the eruption
process, the inflow must develop toward the X-point to compensate the mass ejected by the plasmoid. The inflow
speed can be estimated from the mass conservation law (assuming incompressibility, for simplicity); Vinflow ∼
VplasmoidLplasmoid/Linflow where Lplasmoid and Linflow(≥ Lplasmoid) are the typical sizes of the plasmoid and the
inflow. We consider that the impulsive phase corresponds to the phase when Linflow ∼ Lplasmoid, i.e., Vinflow ∼
Vplasmoid ∼ 50− 400 km/s. Since the reconnection rate is determined by the inflow speed, the ultimate origin of fast
reconnection in this model is the fast ejection of the plasmoid. If the plasmoid ejection (or outflow) is inhibited in
some way, the fast reconnection would soon cease (Ugai 1982).
This model naturally explains various phenomena and key physical parameters, such as (1) Masuda’s impulsive

loop top HXR source as a very hot region heated by the fast mode MHD shock produced by the collision of the
reconnection jet with the reconnected loop (Masuda et al. 1994, 1995), (2) the total energy release rate, (3) the time
scale of impulsive phase, (4) gradual loop top HXR source, and so on.
Furthermore, Shibata (1996, 1997a,b) proposed that the plasmoid-induced-reconnection model is also applicable

to smaller flares, such as microflares and X-ray jets. The key point is that the plasmoid formation and ejection is a
scale invariant process and so it can occur even in a very small flare. The apparent difference in morphology between
plasmoid ejections and X-ray jets is simply due to the fact that the length of the current sheet is short in smaller
flares so that the plasmoid soon collide with the ambient field and reconnects with it to disappear. (Fig. 2). The
mass contained in the plasmoid is transferred into the reconnected open flux tube and forms a collimated jet along
the tube. Through this reconnection, magnetic twist (helicity) is injected into the untwisted loop, resulting in the
unwinding motion of the jet (Shibata and Uchida 1986), which may correspond to the spinning motion observed in
some Hα surges (Canfield et al. 1996, Schmieder et al. 1995). This also explains why we usually do not observe
plasmoid-like (or loop-like) mass ejections in smaller flares (e.g., microflares). In smaller flares, the current sheet is
short, so that a plasmoid soon collides with an ambient field to reconnect with it and disappear. Hence the lifetime of
the plasmoid (or loop-like) ejection is very short, of order of t ∼ L/Vplasmoid ∼ 10− 100 sec. It would be interesting
to test this scenario using high spatial and temporal resolution observations with Doppler shift measurement in
future solar mission such as Solar-B.

5. Plasmoid Acceleration

In the previous section, we simply assumed that a plasmoid is suddenly accelerated just before impulsive phase
of flares. In this section, we shall consider possible acceleration mechanisms of a plasmoid.

5.1. Acceleration by Reconnection Jet
We consider the situation where the reconnection just begins and creates a plasmoid with a length of Lp and

a width of Wp. Since the reconnection generates a jet with the Alfvén speed VA from a reconnection point (an
X-point), the reconnection jet collides with the plasmoid and accelerates it. Then the plasmoid speed increases, and
induces faster inflow into the reconnection point, leading to faster reconnection and larger energy release rate. This,
in turn, accelerates the plasmoid again, eventually leading to a kind of nonlinear instability for the plasmoid ejection
and the associated reconnection.
Let us estimate the plasmoid velocity in this process, by assuming that the plasmoid is accelerated solely by the

momentum of the reconnection jet. We also assume that the plasmoid density ρp and the the ambient plasma density
ρ are constant with time, for simplicity, and also that the mass added to the plasmoid by the reconnection jet is
much smaller than the total mass of the plasmoid.
Equating the momentum addition by the reconnection with the change of momentum of the plasmoid, we have

ρpLpWp
dVp

dt
= ρViLrVA = ρVpWpVA (1)

where we use the mass conservation relation for the inflow and the outflow, VpWp = ViLr . Physically, this means
that the inflow is induced by the outflow (plasmoid ejection). This is the reason why this reconnection is called
plasmoid-induced-reconnection.
The equation (1) is easily solved to yield the solution

Vp = V0 exp(ωt) (2)
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where V0 is the initial velocity of the plasmoid, and ω = ρVA

ρpLp
. Thus, the plasmoid velocity increases exponentially

with time, and the “growth time” (1/ω) is basically of order of Alfvén time. The inflow speed becomes

Vi =
Wp

Lr
Vp =

WpV0 exp(ωt)
Lr(0) + V0

ω (exp(ωt)− 1) (3)

If Wp is constant, the inflow speed increases exponentially with time in the initial phase, but tends to be constant
(� ωWp) in the later phase.
As time goes on, the mass added to the plasmoid by the jet increases and eventually becomes non-negligible

compared with the initial mass. In this case, we obtain the solution

Vp =
VA exp(ωt)

exp(ωt)− 1 + VA/V0
(4)

Hence the plasmoid speed is saturated at around t = tc � 1
ω ln(VA/V0) and hereafter tends to the Alfvén speed VA

as time goes on. The inflow speed becomes

Vi =
WpVp

Lr
= Wp

VA exp(ωt)/(exp(ωt) + a)
(VA/ω) ln[(exp(ωt) + a)/(1 + a)] + Lr(0)

(5)

where a = VA/V0 − 1. If Wp is constant in time, the inflow speed gradually decreases in proportion to 1/t after tc.
On the other hand, if Wp increases with time in proportion to t after tc, the inflow speed becomes constant,

Vi = ωWp(t = 0) =
ρVA

ρpLp
Wp(t = 0) (6)

In this case, the reconnection becomes steady, and the shape of the reconnection jet and plasmoid becomes self-similar
in time and space.
A typical solution for Wp = constant is shown in Fig. 3, which reminds us of the observed relation between

plasmoid height vs. hard X-ray intensity (Fig. 4; Ohyama and Shibata 1997). It is noted here that the hard X-ray
intensity is a measure of the total energy release rate in a flare whereas the inflow speed is related to the total energy
release rate (∝ Poynting flux ∝ ViB

2/(4π)).

5.2. Acceleration by Magnetic Pressure
The plasmoid can be accelerated by magnetic pressure in the ambient medium. This mechanism is often called

diamagnetic expulsion or melon seed mechanism (Parker 1957, Schluter 1957, Pikelner 1969, Uchida 1969, Cargil
and Pneuman 1984, Pneuman and Cargil 1985). Let us estimate the plasmoid speed accelerated by this mechanism.
The equation of motion for a plasmoid may be written as

ρp
dVp

dt
= − d

dz

B2

8π
(16)

where z is the distance measured from the initial position of the plasmoid.
Note that the actual configuration of the plasmoid is three dimensional, so that we have to take into account

various 3D effects such as line tying of foot points of the 3D flux rope (plasmoid) on the solar surface, complicated
multi-dimensional dynamics around the plasmoid, and so on. We should keep in mind this idealization in the
following calculation. Nevertheless, such a calculation (the use of equation (16) with prescribed ambient magnetic
field B(z)) is useful to grasp some key physics underlying in the plasmoid dynamics.
We shall consider the simple case for magnetic field distribution in the ambient medium: B ∝ 1/z2. The example

of this magnetic field is a unipolar radial field (potential field). Assuming ρp = constant, we find the solution

Vp = VA0(1− z2
0

z2
)1/2 = VA0(1 +

t2A0

t2
)−1/2 (5)

where tA0 = z0/VA0, VA0 = B0/(4πρp)1/2 is the Alfvén speed at z = z0, B0 is the field strength at z = z0, and
z0 is the initial position of the plasmoid. The plasmoid speed tends to be constant (VA0) as time goes on. The
acceleration time is comparable to the Alfvén time for characteristic size z0.
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6. Discussion

We have seen that the plasmoid can be accelerated by the local reconnection even if there is no global acceleration
of the plasmoid by the magnetic pressure. The acceleration of the plasmoid is strongly coupled with the reconnection
dynamics, leading to the nonlinear instability. The maximum velocity of the plasmoid is the Alfvén speed, and the
acceleration time is of order of the Alfvén time ρpLp/(ρVA). This nonlinear dynamics determines the maximum
reconnection rate uniquely (if the resistivity increases in accordance with dynamics); the maximum inflow speed is
WpρVA/(ρpLp). Actual dynamics would be nonsteady bursty reconnection due both to microscopic and macroscopic
mechanisms, which would correspond to the impulsive phase of solar flares.
On the other hand, the plasmoid can be accelerated by the magnetic pressure in the global field configuration

(diamagnetic expulsion or the melon seed mechanism). The terminal speed attained by the magnetic pressure
acceleration is of order of the Alfvén speed at the initial position of the plasmoid, and thus comparable to that
by reconnection jet acceleration. The only difference between two mechanisms is the acceleration time or the
characteristic size.
According to numerical simulation of reconnection in a sheared arcade (Choe and Lee 1996), the plasmoid speed

remained slow if uniform resistivity (leading to slow reconnection) is assumed, whereas fast plasmoid ejection becomes
possible if anomalous resistivity (leading to fast reconnection) is assumed. In fact, the reconnection jet in the fast
reconnection can accelerate a plasmoid self-consistently as we discussed in section 5.1. Hence the reconnection
dynamics is coupled with the plasmoid dynamics, and the fast reconnection is necessary to produce fast plasmoid
ejections (Forbes 1990, Magara et al. 1997). If we identify fast reconnection as flares and fast plasmoid ejection as
CMEs, this means that CMEs cannot occur without flares.
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